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Abstract

An important statistical development of the last 30 years has been the advance in regression analysis provided by

generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers

prepared within the framework of an international workshop entitled: Advances in GLMs /GAMs modeling: from species

distribution to environmental management , held in Riederalp, Switzerland, 6�/11 August 2001.We first discuss some

general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of

GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some

of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of

several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of

predictors, and methods for the identification of interactions by a combined use of regression trees and several other

approaches. We close with an overview of the papers and how we feel they advance our understanding of their

application to ecological modeling.
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1. Introduction

An important statistical development of the last

30 years has been the advance in regression

analysis provided by generalized linear models

(GLM) and generalized additive models (GAM).

Nowadays, both three-letter acronyms translate

into a great potential for application in many fields

of scientific research. Based on developments by

Cox (1968) in the late sixties, the first seminal

publications, also providing the link with practice

(through software availability), were those of

Nelder and Wedderburn (1972), McCullagh and

Nelder (1983), Hastie and Tibshirani (1986, 1990).

Since their development, both approaches have

been extensively applied in ecological research, as

evidenced by the growing number of published

papers incorporating these modern regression
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tools. This is due, in part, to their ability to deal
with the multitude of distributions that define

ecological data, and to the fact that they blend in

well with traditional practices used in linear

modeling and analysis of variance (ANOVA).

GLMs are mathematical extensions of linear

models that do not force data into unnatural

scales, and thereby allow for non-linearity and

non-constant variance structures in the data (Has-
tie and Tibshirani, 1990). They are based on an

assumed relationship (called a link function; see

below) between the mean of the response variable

and the linear combination of the explanatory

variables. Data may be assumed to be from several

families of probability distributions, including the

normal, binomial, Poisson, negative binomial, or

gamma distribution, many of which better fit the
non-normal error structures of most ecological

data. Thus, GLMs are more flexible and better

suited for analyzing ecological relationships, which

can be poorly represented by classical Gaussian

distributions (see Austin, 1987).

GAMs (Hastie and Tibshirani, 1986, 1990) are

semi-parametric extensions of GLMs; the only

underlying assumption made is that the functions
are additive and that the components are smooth.

A GAM, like a GLM, uses a link function to

establish a relationship between the mean of the

response variable and a ‘smoothed’ function of the

explanatory variable(s). The strength of GAMs is

their ability to deal with highly non-linear and

non-monotonic relationships between the response

and the set of explanatory variables. GAMs are
sometimes referred to as data- rather than model-

driven. This is because the data determine the

nature of the relationship between the response

and the set of explanatory variables rather than

assuming some form of parametric relationship

(Yee and Mitchell, 1991). Like GLMs, the ability

of this tool to handle non-linear data structures

can aid in the development of ecological models
that better represent the underlying data, and

hence increase our understanding of ecological

systems.

Few syntheses of GLMs and GAMs have been

made since the first papers encouraged their use in

ecological studies (Austin and Cunningham, 1981;

Vincent and Haworth, 1983; Nicholls, 1989; Yee

and Mitchell, 1991). As a first step in this
direction, the series of papers included in this

special issue all arose from a workshop (held in

Riederalp, Switzerland, 6�/10 August 2001) de-

voted to the use of GLMs and GAMs in ecology.

Together, these papers constitute a valuable op-

portunity to report on the advances and insights

derived from the application of these statistical

tools to ecological questions over the last two
decades. A series of more applied papers from the

same workshop are found in a parallel special issue

published in Biodiversity and Conservation (Guest

Editors: Lehmann, A., Austin, M. and Overton,

J.).

Our introductory review paper is necessarily

restricted to GLMs and GAMs, and is intended to

provide readers with some measure of the power of
these statistical tools for modeling ecological

systems. We first establish a context by discussing

some general uses of statistical models in ecology,

as well as providing a short review of several key

studies that have advanced the use of GLMs and

GAMs in ecological modeling efforts. We next

present a general overview of GLMs and GAMs,

and some of their related statistics that are used in
predictor selection, diagnostics, and model evalua-

tion. We close with an overview of the papers

included in this volume and how we feel they

advance our understanding of GLM and GAM

applications to ecological modeling.

2. A framework for use of statistical models in

ecological studies

We make a strong distinction here from general

ecological models, speaking of statistical models as

a subset distinct from conceptual or heuristic

models. In most studies, some sort of conceptual

or theoretical model (Austin, this volume) of the

ecological system is already, and certainly should

be, proposed (sensu Cale et al., 1983) before a
statistical model is even considered (see also

Guisan and Zimmermann, 2000). The purpose of

the statistical model is to provide a mathematical

basis for interpretation, examining such para-

meters as ‘fit’ (Do the measured predictors ade-

quately explain the response?), ‘strength’ of
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association (Is the relationship between the re-
sponse and the predictors significant?), and to

ascertain the contributions and roles of the differ-

ent variables.

Reasons for the use of statistical models in

ecology are as complex and varied as is the study

of ecology (see Burnham and Anderson, 1998:

Chapter 1). A complete overview is beyond the

scope of this review, and readers are referred to
more specialized literature (e.g. Ludwig and Rey-

nolds, 1988; Jongman et al., 1995; Zar, 1996;

Legendre and Legendre, 1998), all of which

provide different and varying insights into the

role of statistical modeling in ecology. From our

perspective, one of the simplest and perhaps most

widely understood characteristics of statistical

models in ecology is the contrast between so-called
explanatory and predictive models.

In general, explanatory models seek to provide

insights into the ecological processes that produce

patterns (e.g. Austin et al., 1990). Often, these

relationships are determined from statistical mod-

els that ascertain the strength of the statistical

relationship between a response (e.g. plant species

presence) and a suite of one or more explanatory
variables (e.g. precipitation, soil type, solar radia-

tion). In contrast, predictive models typically seek

to provide the user with a statistical relationship

between the response and a series or predictor

variables (hereafter simply called the predictors)

for use in predicting the probability of species

occurrence or estimating numbers of an organism

at new, previously unsampled locations. These
models often use variable reduction techniques in

the analytical phase and have as their goal a model

that predicts the ecological attribute(s) of interest

from a restricted number of predictors. The

concept of parsimony, that the simplest explana-

tion is best, is inherent in such modeling efforts.

The reduced model typically has lower variance,

which will trade off with bias in optimizing
prediction error.

Regression analyses have been broadly applied

in ecology. However, one field where the use of

modern regression approaches has proven parti-

cularly useful is the modeling of the spatial

distribution of species and communities (Guisan

and Zimmermann, 2000; Scott et al., 2002).

Examples include the use of regression analyses

to predict the distribution of tree and shrub species

(Austin et al., 1983, 1990; Lenihan, 1993; Franklin,

1998; Guisan et al., 1999), of herbaceous species

(Guisan et al., 1998; Guisan and Theurillat, 2000),

of aquatic plant species (Lehmann, 1998), of

terrestrial animal species (Pereira and Itami,

1991; Augustin et al., 1996; Manel et al., 1999;

Guisan and Hofer, 2001; Jaberg and Guisan, 2001;

Zimmermann and Breitenmoser, 2002), of birds

(Manel et al., 1999, 2000), of aquatic animal

species (invertebrates; Manel et al., 2000), of plant

communities (Zimmermann and Kienast, 1999), or

of structural vegetation types (Brown, 1994; Fres-

cino et al., 2001). At a higher level of complexity,

these approaches have also been used to investi-

gate the distribution of plant (Currie and Paquin,

1987; Margules et al., 1987; Pausas, 1994; Heikki-

nen, 1996; Wohlgemuth, 1998) and animal diver-

sity (Owen, 1989; Currie, 1991; Fraser, 1998).

Implicit in the application of regression tools for

species modeling is a pseudo-equilibrium (Guisan

and Theurillat, 2000, Austin this issue) between

the organisms and their environments. Conse-

quently, use of these tools to identify environ-

mental factors responsible for the distribution of

species that are, for example, still expanding their

range in the study area can lead to biased results

like truncated ecological response curves (Hirzel et

al., 2001). GLMs and GAMs, the focus of this

collection of papers, effectively model ecological

(realized) rather than fundamental niches due to

their intrinsic empirical nature. Thus, they impli-

citly incorporate biotic interactions and negative

stochastic effects (Guisan and Zimmermann, 2000)

that can change from one region to another. This

can make models fitted for the same species, but in

different areas and/or at different resolutions,

difficult to compare (Guisan and Theurillat,

2000). Hence, the predictive capability of such

models is frequently low (Roloff and Kernohan,

1999; Pearce and Ferrier, 2000), and most have

limited success when applied to other sampling

locations (Power, 1993). An exception is the tree

species richness model of Currie (1991), developed

in North America but which provided acceptable

estimates when applied to UK.
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Unfortunately, few studies using regression
analyses for predictive purposes incorporate even

simple statistical validation exercises (Fielding and

Bell, 1997; Manel et al., 2002), even though

numerous techniques exist (Manly, 1997). Even

fewer perform field validation (Rykiel, 1996;

Manel et al., 2002), calling into question the

ultimate validity and application of the models

(Guisan and Zimmermann, 2000). This lack of
validation and uncertainty assessment remains a

serious issue in ecological modeling (Fielding and

Bell, 1997, Elith et al., this volume).

3. Regression models

3.1. Linear regression

Linear regression is one of the oldest statistical

techniques, and has long been used in biological

research. The basic linear regression model has the

form:

Y �a�X Tb�o (1)

where Y denotes the response variable, a is a

constant called the intercept, X�/(X1, . . ., Xp ) is a

vector of p predictor variables, b�/{b1, . . ., bp} is

the vector of p regression coefficients (one for each

predictor), and o is the error. The error represents

measurement error, as well as any variation

unexplained by the linear model. When fitting a
regression model, one tries to minimize this

unexplained variation through the application of

estimation techniques such as the least-squares

(LS) algorithm.

Although a powerful approach in situations

when appropriately applied, linear regression is

limited by three main assumptions:

1) the errors oi are assumed to be identically and

independently distributed; this includes the

assumption that the variance of Y is constant
across observations;

2) for testing purposes, the errors oi are assumed

to follow a normal (Gaussian) distribution;

and

3) the regression function is linear in the pre-

dictors.

Violation of assumption 1 constitutes a limita-
tion to the application of most parametric statis-

tical models, and is directly related to data

sampling. Typically, many data in ecology are

not Gaussian and do not have a constant variance.

As an example, count data (e.g. number of

individuals or species) follow a Poisson distribu-

tion (Vincent and Haworth, 1983; Jones et al.,

2002; see also Barry and Welsh this volume), and
their variance is proportional to their mean

(Davison, 2001).

A common way of dealing with departures from

assumptions 1 and 2 is to transform the response

variable so that it meets the criteria of normality

and constant variance. Several approaches for

transforming data are available (e.g. Box�/Cox

approach), and the matter is still being discussed in
the current literature (e.g. Marshall et al., 1995;

Mateu, 1997). Violations of assumption 3 have

traditionally been dealt with by augmenting the

predictors with polynomial terms, interactions and

other non-linear transformations of the original

predictors, leading to a model non-linear in the Xj

but linear in the parameters.

3.2. Generalized linear models

The assumptions above are implicit in LS
regression. The advent of more flexible estimation

techniques, such as maximum likelihood, was a

major step forward in the development of GLMs

(Nelder and Wedderburn, 1972, see McCullagh

and Nelder, 1983 for the first comprehensive

book). Because the mathematical rationale can

be found in recent statistical textbooks (e.g.

McCullagh and Nelder, 1989; Harrell, 2001; Has-
tie et al., 2001), we describe these models only

briefly to provide context for the following papers.

In GLMs, the predictor variables Xj (j�/1, . . .,
p) are combined to produce a linear predictor LP

which is related to the expected value m�/E (Y ) of

the response variable Y through a link function

g(), such as:

g(E(Y ))�LP�a�X Tb (2)

where a , X , b are those previously described in

Eq. (1). We have written the model for generic

variables X and Y ; the corresponding terms for
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the ith observation in the sample is:

g(mi)�a�b1xi1�b2xi2� . . .�bpxip (3)

Unlike classical linear models, which presuppose

a Gaussian (i.e. normal) distribution and an

identity link, the distribution of Y in a GLMs

may be any of the exponential family distributions
(e.g. Gaussian, Poisson or binomial) and the link

function may be any monotonic differentiable

function (like logarithm or logit). The variance of

Y depends on m�/E (Y ) through the variance

function V (m), giving Var(Y )�/fV (m), where f

is a scale (also known as a dispersion) parameter.

When the scale parameter is expected to be higher

than the value anticipated under the chosen
distribution (i.e. over-dispersion), the scale para-

meter can be estimated using quasi-likelihood; an

extension of generalized least-squares (Davison,

2001).

The main improvements of GLMs over LS

regression are hence:

1) the ability to handle a larger class of distribu-

tions for the response variable Y . Apart from

the Gaussian, other distributions are the

binomial, Poisson and Gamma; these are
usually specified through their respective var-

iance functions (see McCullagh and Nelder,

1989). GLMs can also accommodate more

general qualitative (Davis and Goetz, 1990)

and semi-quantitative (ordinal; Guisan and

Harrell, 2000) response variables, usually

based on a series of logistic binary GLMs;

2) the relationship of the response variable Y to
the linear predictor (LP) through the link

function g (E (Y )). In addition to ensuring

linearity, this is an efficient way of constrain-

ing the predictions to be within a range of

possible values for the response variable (e.g.

between 0 and 1 for probabilities of presence).

Guisan (2002) provides an illustration of this

constraint, while Pregibon (1980), Breslow
(1996) discuss some valuable tests for choos-

ing the appropriate link function; and

3) it incorporates potential solutions (like quasi-

likelihood) to deal with overdispersion (see

Davison, 2001 for a more thorough discus-

sion).

Fitting a GLM is much the same as fitting a
multiple LS regression. Polynomial terms, or other

parametric transformations, can be included in

both cases in the set of predictors to account for

non-linear and multi-modal responses (e.g. uni-

modal or bimodal). As in LS regression, the choice

of the appropriate transformation can often be

identified through scatterplots of partial residuals.

Although several types of residuals are available
for GLMs, partial residual plots based on the

working residuals are most suitable for this

purpose (Breslow, 1996). As in LS regression,

influential observations (i.e. outliers) can be de-

tected through standard diagnostics such as

Cook’s distance (see Breslow, 1996).

3.3. Generalized additive models

The identification of appropriate polynomial

terms and transformations of the predictors to

improve the fit of a linear model can be tedious

and imprecise. The introduction of models that

automatically identify appropriate transforma-

tions was a second important step forward in

regression analyses. This led to a wider general-

ization of GLMs known as GAMs (Hastie and
Tibshirani, 1990). One can envision the different

regression models as being nested within each

other, with simple and multiple LS linear regres-

sion (SLR and MLR) being the two most limiting

cases, and GAMs the most general:

SLRƒ/MLRƒ/GLMƒ/GAM

GAMs are parameterized just like GLMs,

except that some predictors can be modeled non-

parametrically in addition to linear and polyno-

mial terms for other predictors. The probability

distribution of the response variable must still be

specified, and in this respect, a GAM is para-

metric. In this sense they are more aptly named

semi-parametric models. A crucial step in applying
GAMs is to select the appropriate level of the

‘smoother’ for a predictor. This is best achieved by

specifying the level of smoothing using the concept

of effective degrees of freedom. A reasonable

balance must be maintained between the total

number of observations and the total number of
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degrees of freedom used when fitting the model
(sum of levels of smoothness used for each

predictor).

3.4. Variable selection methods and diagnostics

Variable selection is basically the same for all

the described regression models, although evalua-

tion criteria like the Akaike Information Criterion

(AIC, Akaike, 1973; see also Sakamoto et al.,
1988) can be used with GLMs and GAMs. In all

models, one can use predefined rules such as

deviance reduction as measured with the x2

statistic, or approaches that minimize AIC. More

automatic procedures, such as stepwise regression

or shrinkage rules, can also be used. However,

stepwise procedures are considered to be high-

variance operations because small perturbations of
the response data can sometimes lead to vastly

different subsets of the variables. They should be

used with care (Guisan and Zimmermann, 2000).

They can be improved if selection criteria based on

permutations of the data, such as 5- or 10- fold

cross-validation, are used (Hastie et al., 2001).

Shrinkage rules, such as ridge regression or

lasso, are promising alternatives (Tibshirani,
1996; Harrell et al., 1996, 1998; Harrell, 2001;

Hastie et al., 2001) to stepwise procedures when

using GLMs or GAMs. Ridge regression keeps all

the terms in the model, but shrinks their coeffi-

cients towards 0 using a quadratic penalty term,

such as a bound on the sum-of-squares of the

coefficients. This has the effect of reducing the

variance of the fit of the model, while increasing
the bias. By trading off these two quantities, a

model that best predicts unseen observations can

be identified. The lasso is similar, except that it

imposes a bound on the sum of absolute values of

the coefficients; this also shrinks the coefficients

towards zero, but many of them are exactly set to 0

in the process. Hence, the lasso is a compromise

between variable-subset selection and ridge regres-
sion. Both have a shrinkage parameter that needs

to be selected, typically by cross-validation.

Collinearity in the predictors is another crucial

problem associated with stepwise model selection

(Brauner and Shacham, 1998). A common obser-

vation is that two highly correlated predictors can

both appear non-significant even though each

would explain a significant proportion of the

deviance if considered individually. Various ap-

proaches can be used to detect harmful collinear-

ity, such as condition number and variance

inflation factor (VIF; Brauner and Shacham,

1998), although with careful model selection or

regularization through application of ridge or

lasso techniques collinearity becomes less of an

issue.
The evaluation of interactions between two or

more predictors is presently receiving more atten-

tion, particularly from an ecological perspective

(see Austin, this volume). The failure to identify

and incorporate ecologically meaningful interac-

tions has constituted a major limitation of past

ecological modeling exercises (Austin, this vo-

lume). A promising approach, suggested by T.

Hastie during the workshop, is to use classification

and regression tree (CART) techniques in a

complementary way to GLMs and GAMs to

identify these interactions. Another approach for

considering species interactions might be to set up

simultaneous GLM or GAM equations where

each modelled species is incorporated as a pre-

dictor into the model of one or several other

species (see Austin, 1971; Brzeziecki, 1987; Guisan,

2002).

Inference tests for the selection of predictors

that explain a significant portion of the variance,

or deviance in the case of maximum likelihood

estimation techniques, are similar for all regression

models, mainly the F -test in the case of LS

regression and x2-tests in the case of GLMs and

GAMs (Cantoni and Hastie, 2002). Several diag-

nostics can be applied to continuous response

regression models. These can be used to assess

the relevance of the chosen model (quantile�/

quantile plots, residual plots), identify outlying

observations (Cook’s distance), or to identify

remaining trends in the data (partial residual

plots). More specific diagnostic plots are needed

in the case of GLMs or GAMs for nominal or

ordinal responses (see e.g. Guisan and Harrell,

2000), or in the case of logistic binomial models

(Davison, 1989a,b; Davison and Tsai, 1992; Hos-

mer and Lemeshow, 2000).
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Where geographic space matters and local
processes (e.g. climate) are known to occur,

locally-weighted regressions can be fitted. Here,

regression analyses are repeatedly applied within a

moving window over the geographic range of

interest (e.g. DAYMET climate modeling, Thorn-

ton et al., 1997). The study by Huntley et al. (1995)

is one of the rare examples of this approach

applied to species distribution modeling. This
approach could be implemented with a two-

dimensional smoother in a GAM, using the two

geographic coordinates as a variable, along with

other terms in the model. However, there are

problems in making predictions from such a

model, if the predictions are to be made at

geographic locations vastly different from those

encountered in the training data. Local regression
models extrapolate poorly, if at all, depending on

the type of kernel used.

4. What’s in this issue

The papers presented in this volume provide a

broad evaluation of GLMs and GAMs as applied

to species distribution modeling. Many explore
one or more issues, attempting to determine, in

part, the utility of these tools for ecological

modeling.

The first contribution by Mike Austin provides

a major link between ecological theory and

statistical modeling. Going further than simply

reviewing the strengths and weaknesses of GLMs

and GAMs, he proposes a useful framework for
modeling species and community distributions,

and testing ecological hypotheses. Austin makes

a distinction among ecological models, data mod-

els and statistical models, and he warns that

particular attention should be given to each type

of model to ensure that relevant conclusions are

drawn from model results. Particular attention is

given to some of the major questions in species
modeling, such as the shapes of response curves,

causal versus indirect ecological predictors, mod-

eling individual versus collective properties (com-

munities, biodiversity), and incorporating

ecological features in models, such as dispersion

and competition.

Jari Oksanen and Peter Minchin expand the
discussion on the shape of species response curves

along continuous ecological gradients. Using data

on vascular plant distribution along an elevation

gradient, they test four main types of models for

fitting such responses: (i) a hierarchical set of

models (HOF) discussed by Huisman et al. (1993);

(ii) binomial GLMs (logistic link); (iii) binomial

GAMs (logistic link); and (iv) beta-functions
(Austin et al., 1994). HOF models are the most

effective method for their data, and GAMs

provide very similar results in most cases.

The question of the shapes of species response

curves also receives attention in Einar Heegaard’s

contribution. He shows how powerful GAMs are

in this regard, principally through their fitting of

non-parametric responses that more closely follow
the data. His main emphasis is to provide the

missing link between GAM-fitted responses and

ecological theory. He does this by proposing two

simple parameters, the outer and central borders,

which can be easily calculated from the estimated

values of the GAMs. Hence, these parameters are

directly related to the response rather than to a

parametric response function as in the case of
GLMs.

Mark Boyce and co-authors introduce the use of

GLMs for building resource selection functions

(RSF) describing habitat use by animals*/indeed

a very similar approach to building predictive

habitat distribution models*/and the way they

are commonly evaluated. Using two case studies of

data distributed both in space and time, they show
how the model evaluation process itself can be

affected by ecological and behavioral variations

that are specific to different sites and species

history. They emphasize the importance of pre-

dictive capabilities of RSF models and propose a

form of k -fold cross-validation for evaluating

prediction success.

Thomas Yee and Monique Mackenzie introduce
a broader class of linear and additive models,

vector generalized linear models (VGLMs) and

vector generalized additive models (VGAMs), and

discuss their potential for ecological research.

VGLMs and VGAMs comprise a large family of

models and distributions, among which GLMs

and GAMs are only a subset. As in GLMs and
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GAMs, VGLMs are model-driven whereas
VGAMs are more data-driven. A large variety of

VGLMs and VGAMs are described and illustrated

with examples of particular relevance for ecolo-

gists.

Simon Woods and Nicole Augustin give a

tutorial introduction to smoothing splines and

their computational details. They then propose

an approximation that simplifies the computations
considerably, and extend these to GAM models.

The reduced computations allow fast automatic

selection of the smoothing parameters using the

GCV criterion, an approximation to cross-valida-

tion. They demonstrate their R implementation of

this software on two environmental examples.

Simon Barry and Alan Welsh present alternative

flexible GAMs models for predicting species dis-
tributions when observed count data include a

larger proportion of zeros than expected (i.e. zero-

inflated) in a Poisson distribution. In their ap-

proach, distribution patterns are modeled in two

steps: (i) picking the main presence�/absence

pattern using a logistic model; and (ii) fitting the

remaining variation in abundance where the

species is present (i.e. conditional on the response
being greater than 0) by using a second-abundance

(Poisson)-model. An example is then provided

using data on the distribution on stem counts of

Eucalyptus mannifera in the South-East of Aus-

tralia.

Patrick Osborne and Susana Suárez-Seoanes

discuss the problem of spatial non-stationarity in

the data and its influence on the quality of the
model fit. Using data from three bird species in

Spain, they build sub-models by partitioning the

data set spatially into geographical quarters or

rings based on the centroid of the modeling space.

These sub-models are compared with each other

and against the global model. They conclude that

spatial partitioning is useful for detecting spatial

non-stationarity, and hence alert the modeler to
some particular eco-geographic patterns, but that

random sampling should be preferred to build

robust models. For future research, they propose

interesting alternative modeling approaches for

use when spatial non-stationarity is detected.

Jennifer Miller and Janet Franklin applied a

different approach to evaluate spatial depen-

dences, using indicator kriging that included
neighborhood influences as a predictor in the

model. Their modeling of the distribution of four

vegetation alliances in the Mojave Desert in

California shows that including such spatial auto-

correlation in the model improves model fit and

accuracy, although the resulting spatial predictions

may look unrealistically smooth in some cases.

Gretchen Moisen and Tracey Frescino compare
GAMs to four alternative modeling techniques of

various levels of complexity: simple linear models

(LM), CART, multivariate adaptive regression

splines (MARS), and artificial neural networks

(ANN). Models were applied to both nominal and

continuous forest habitat response variables.

MARS and ANN worked best when applied to

simulated data, but less so when applied to real
data, in which case a LM approach often provided

comparable results. GAMs and MARS, however,

were marginally best overall for modeling forest

characteristics.

The contribution by Jane Elith and co-authors is

based on the observation that too few studies of

species distribution modeling incorporate maps of

prediction uncertainties. Such information is often
crucial for decision makers involved in conserva-

tion and management, and should be seen as an

important complement to probability maps. In

their review, they distinguish epistemic from

linguistic uncertainties. The first category encom-

passes measurement of systematic errors as well as

natural variation, model uncertainty and subjec-

tive uncertainty, whereas the second category
encompasses vagueness, ambiguity and underspe-

cificity. These concepts are discussed in the context

of GLMs, and examples using logistic regression

models are presented.

Richard Aspinall uses GLMs to evaluate and

calibrate classification outputs from high spatial

resolution hyperspectral imagery, focusing on the

identification and mapping of coarse woody debris
and Populus spp. Hyperspectral imagery is a

promising remote sensing approach with applica-

tion to the predictive mapping of finer habitat

units and, potentially, of single species distribu-

tions. He used logistic regression to relate the

imagery to the categorical field data, then built a

predictive model identifying both the likelihood of
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woody debris and Populus spp. being present, and
the amount, in each specific spatial location. The

measured goodness-of-fit of the model provides a

simple but comprehensive measure of classifica-

tion accuracy.

Anthony Lehmann and co-authors present a

powerful automated tool they call GRASP, which

formalizes an approach to species distribution

modeling using GAMs. The approach is illustrated
using two types of response variable: (i) presence�/

absence of the fern species Cyathea dealbata

(binary data); and (ii) overall fern species richness

(count data). Measures of model goodness-of-fit

and of quality of predictions, as well as model

interpretability, are discussed.

Elisabeth Zaniewski and co-authors test an

approach for fitting GAMs when only presence
data are available. Models are prepared for 43

native species of ferns in New Zealand, using

presence-only data from a data set including

presence�/absence data gathered at nearly twenty

thousand sites. They compared their approach

with another, the ecological niche factor analysis

(ENFA; Hirzel et al., 2001), which is also used for

modeling presence*/only data. Because logistic
models require a binary response variable,

‘pseudo’ absences were generated according to

different methods. The GAM-based models pro-

vided slightly better species’ predictions than the

ENFA-based approach, although ENFA provides

more realistic predictions of collective properties

such as species richness

Finally, Alexandre Hirzel and Antoine Guisan
use a simulation approach to compare different

sampling strategies and different sample sizes for

building GLMs-based predictive habitat distribu-

tion models. The strategies compared included a:

(i) systematic grid; (ii) pure random; (iii) random-

stratified with an equal number of replicates per

stratum; and (iv) random-stratified with the num-

ber of replicates per stratum proportional to the
stratum area. Comparative evaluations show that,

overall, equal random-stratified and grid perform

best and are seemingly equivalent.

It is our belief that the papers in this volume

provide a unique overview of the use of GLMs and

GAMs in modeling species distributions. Each

evaluates one or more aspects of these statististical

tools and their use in ecological studies. Together,
they serve as an excellent source of knowledge that

should foster the continued and increased use of

GLMs and GAMs in ecology. Enjoy!
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German and Italian). Birkhäuser Verlag, Basel, pp. 183�/

189.

Guisan, A., Theurillat, J.-P., Kienast, F., 1998. Predicting the

potential distribution of plant species in an alpine environ-

ment. J. Veg. Sci. 9, 65�/74.

Guisan, A., Weiss, S.B., Weiss, A.D., 1999. GLMs versus CCA

spatial modeling of plant species distribution. Plant Ecol.

143, 107�/122.

Harrell, F.E., Jr, 2001. Regression Modeling Strategies with

Applications to Linear Models, Logistic Regression, and

Survival Analysis. Springer, New York.

Harrell, F.E., Lee, K.L., Mark, D.B., 1996. Multivariable

prognostic models: Issues in developing models, evaluating

assumptions and adequacy, and measuring and reducing

errors. Stat. Med. 15, 361�/387.

Harrell, F.E., Margolis, P.A., Gove, S., Mason, K.E., Mulhol-

land, E.K., Lehmann, D., Muhe, L., Gatchalian, S.,

Eichenwald, H.F., 1998. Development of a clinical predic-

tion model for an ordinal outcome. Stat. Med. 17, 909�/944.

Hastie, T.J., Tibshirani, R.J., 1986. Generalized additive

models. Stat. Sci. 1, 297�/318.

Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive

Models. Chapman & Hall.

Hastie, T.J., Tibshirani, R.J., Friedman, J., 2001. Elements of

Statistical Learning: Data Mining, Inference and Prediction.

Springer, New York.

Heikkinen, R.K., 1996. Predicting patterns of vascular plant

species richness with composite variables: a meso-scale

study in Finnish Lapland. Vegetatio 126, 151�/165.
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